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Recurent Neural Network as a Tool for Parameter
Anomaly Detection in Thermal Power Plant

A. Hajdarevic, L. Banjanovic-Mehmedovic, I. Dzananovic, F.Mehmedovic, M. Ayaz Ahmad

Abstract— Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior. It is very
important to timely detect parameter anomalies in real-world running thermal power plant system, which is one of the most complex
dynamical systems. Artificial neural networks are one of anomaly detection techniques. This paper presents the Elman recurrent neural
network as method to solve the problem of parameter anomaly detection in selected sections of thermal power plant (steam superheaters
and steam drum). Inputs for neural networks are some of the most important process variables of these sections. In addition to the
implementation of this network for anomaly detection, the effect of key parameter change on anomaly detection results is also shown.
Results confirm that recurrent neural network is good approach for anomaly detection problem, especially in real-time industrial
applications.

Index Terms— Anomaly detection, Industrial application, Recurrent neural network, Thermal power plant

—————————— ——————————

1  INTRODUCTION
nomaly detection refers to detecting patterns in a given
data set that don't conform to an established normal
behavior. The patterns thus detected are called anomalies

[1]. Anomalies are also referred to as outliers.
Conventional anomaly detection techniques have been

used for a long time, but with the development of computer
technology modern anomaly detection techniques can be de-
veloped. Machine learning techniques could detect outliers in
data sets form a variety fields [2, 3]. Some of those techniques
are: distance based technique (k-nearest neighbor), Support
Vector Machines, Principal Component Analisys (PCA), neu-
ral networks, cluster analysis, Markov Chain Monte Carlo
based method [2]. The application of neural networks for
anomaly detection in power plants is considered in papers [4]
and [5]. The comparison between neural networks based and
statistical anomaly detection techniques can be found in [6].
Neural networks in combination with fuzzy logic for anomaly
detection are considered in [7].

Multiple types of neural networks could be used for
anomaly detections: MLP neural networks, recurrent neural
networks (RNN), probabilistic neural networks, etc.  If the
neural network is created to detect anomalies in the system,
reaction time on the anomaly could be significantly reduced.
This would provide greater system stability and therefore
fewer losses.

This  paper  presents  one  of  the  possible  solutions  to  the

anomaly  detection  problem in  boiler  system using  Elman  re-
current neural network. Given the complexity of the system,
because of necessary simplification, only some characteristic
sections and some characteristic process variables were select-
ed. All of the input data that are used are coming from the
system for monitoring and control  present in Thermal Power
Plant "Tuzla", Bosnia and Herzegovina.

2 SELECTED SECTIONS OF THERMAL POWER PLANT
With around 40% share in global electricity production, ther-
mal power plants are still significant power generation facili-
ties, although their influence is reduced in favor of the renew-
able energy plants. Adequate control of thermal power plant
units is necessary for the system to function properly, since
improper functioning of the system may result in electricity
supply interruption and financial losses for electricity produc-
ers.

A thermal power plant, as a large and complex system,
consists of multiple smaller systems that work together and
ensure continuous electricity generation. This paper is focused
on one of the main systems of every thermal power plant and
that is the boiler.

The  boiler  is  one  of  the  most  important  systems  in  a  ther-
mal power plant because of its role in electricity generation [8],
[9]. The boiler represents the entire system that participates in
the conversion of water into steam. A single division of the
boiler system into individual sections does not exist, because
many sections are connected and there is often no clear dis-
tinction between them. In this paper, the division is made
according to available process images with certain corrections
concerning data availability. A rough block diagram is shown
in Figure 1. It shows important boiler sections and selected
sections of the boiler (Steam Superheaters and Drums) for
anomaly detection. It also shows (some) connections between
the sections.
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From the above, it is clear that the malfunction of any part
in boiler system affects the operation of thermal power plant.
Outage of some part or the whole thermal power plant unit
can often be avoided with timely anomaly detection.

2.1 Water - Steam System
This system is primarily engaged in converting water into
steam and consists of multiple subsystems with separate fun-
ctions. The system consists of multiple pipes and vessels. Heat
exchange between different media occurs in this system in
order to achieve optimal steam parameters. The steam is dri-
ven further to the turbine propelling it, which is essential for
electricity generation. Process image of the water-steam sys-
tem is shown in Figure 2. Given that the quality and parame-
ters of steam directly affect the electricity generation, anomaly
detection in this system is of great importance for the plant.
The most important measurements of process variables related
to steam are temperature, pressure and steam flow which
directly affects the current power output.

2.2 Feed - Water System
One of the important subsystems of the boiler is the system for
its feedwater supply, because without the feedwater supply
there is no steam generation. After the raw water is treated at
the chemical water treatment plant, the water is stored in the
feedwater tank. The water is distributed further from the tank
into the feedwater pipe system using feedwater pumps. The
pumps maintain the specified feedwater flow which is
determined by the required power output. The purpose of this
system is distribution of feedwater to the most important
subsystem of the water-steam system – the steam drum.

2.3 Steam Superheaters
The steam generated in the steam drum is distributed through
this system. After distribution of steam through this system, it
is called the superheated steam. Steam superheaters system
consists of pipes mounted in the boiler that distribute the

steam to the turbine. This system has a major role in removing
moisture from the steam, which improves its quality.

The temperature of steam generated in the drum still
doesn't match the temperature needed in the process. The
steam generated in the drum still contains a certain percentage
of moisture. Such steam should not be distributed to the tur-
bine due to the possibility of condensation on the blades. In
every thermal power plant, there is a tendency to produce
100% quality steam. Because of that, the steam is heated in this
system using flue gases. Increasing the steam temperature
results in removal of moisture from the steam and that is the
primary goal of this system. The steam temperature is increa-
sed by around 160°C compared to steam temperature in the
drum. The goal of the system is to maintain the temperature
around 535°C, which is optimal for boiler analyzed in this
paper.

2.4 Staem Drum
The most important subsystem of the water-steam system is
the steam drum, which is a large tank with the task of steam
extraction from a water-steam mixture stored in the drum,
which is shown as in Figure 3. Given the importance of the
drum for electricity generation, it is logical that timely
anomaly detection is required in this system. The most impor-
tant process variable in the drum is the water level. In additi-
on to that, steam pressure, conductivity and pH value are also
measured.

3  ANOMALY DETECTION TECHNIQUES
The importance of anomaly detection is due to the fact that
anomalies in data translate to significant actionable informati-
on in a wide variety of application domains, from Cyber-
Intrusion Detection, to Industrial Demage Detection and Sen-
sor Networks [1].

Anomaly detection techniques division can be done in mul-
tiple ways [10, 11]. Based on the means of acquiring
knowledge anomaly detection techniques can operate in one
of the following three modes: supervised, semi-supervised

Fig. 2. Process image of Water-Steam System.
Fig. 1. Block diagram of boiler sections (some turbine sections
included).
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and unsupervised. Techniques that operate in unsupervised
mode detect anomalies by analyzing an unlabeled data set and
making an implicit assumption that majority of the data set
represents normal instances. Anomalous data is the data that
least fits the characteristics of the data set. Techniques that
operate in semi-supervised mode build a model for the class
corresponding to normal behavior. Then the model is used to
identify anomalies in the test data. Techniques that operate in
supervised mode require two data sets, one labeled as normal
behavior and the other labeled as anomaly. Then it is needed
to train the classifier that determines if the test data belongs to
the class labeled as normal behavior.

In addition to this division, there is also another division
that is used in this paper, proposed in [1]. It is division based
on anomaly type and classifies anomaly detection techniques
in one of the following three groups: point anomaly detection
techniques, contextual anomaly detection techniques and col-
lective anomaly detection techniques. If an individual data
instance from a data set can be considered as anomalous with
respect to the rest of data, then such instance can be classified
as a point anomaly.

Classification is used to learn a model from a set of labeled
data instances (training data set). After that, the model is used
to classify a test instance into one of the classes. These
techniques operate under the assumption that there is enough
data in the training data set, so the classifier can learn how to
classify test data [11]. Commonly used classification based
anomaly detection techniques are: rule based techniques, neu-
ral networks based techniques and support vector machines
(SVM) based techniques.

The focus of this paper is point anomaly detection tech-
nique using neural network. Neural network performance

largely depends on number of neurons and it also depends on
number of hidden layers. Neural networks are trained with
normal instances and anomalous instances. After that the net-
work should be able to determine anomalous instances in a
test data set.

4  RECURRENT NEURAL NETWORK
Recurrent neural networks (RNN) use a feedback loop in their
hidden layers. The recurrent neural networks also calculate
the activation function value, like feedforward neural
networks do. However, an input to the network represents not
only the current input, but also a state of the network before
the current input is provided. That means that after a number
of iterations, an output value will be a function of all of the
inputs provided to that iteration.

At any point, an activation function output propagates
forward through one hidden layer. Once the output is present,
it continues to propagate through the network, even if a new
input is not present. It is possible to use an array of data as
neural network input and get the output as a function of the
whole array. Therefore, this type of network can be used to
solve complex problems that some feedforward networks
cannot solve, but the downside is that some additional lear-
ning difficulties may occur.

A recurrent neural network used as parameter anomaly de-
tection tool in this paper is the Elman recurrent artificial neu-
ral network (named after its creator – Jeffrey L. Elman, 1990)
that was developed from the Jordan recurrent network. These
two types of neural networks are also called simple recurrent
networks (SRN).

Elman  neural  network  usually  has  only  one  hidden  layer
with a feedback loop, but multiple hidden layers can be also
used. The feedback loop present in this type of neural network
returns a hidden layer output value which is used as an input
for the next iteration. That is how the hidden layer acquires
information about the state of the network. An example of
Elman neural network is shown in Figure 4. Activation functi-
ons in hidden and output layers are very similar  to the MLP
neural network (a tansigmoid function is used in the hidden
layer while a linear function is used in the output layer).

A simple explanation of how an input propagates through
the network can be divided into four steps. In the first step,
the network input is accepted. In the second step, the network
calculates activation function values in the hidden layer where

Fig. 3. A steam drum cross-section.

Fig. 4. An example of Elman recurrent artificial neural network.
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the current iteration data and previous iterations data is used.
This is followed by calculating activation function values in
the output layer. The last step includes copying of activation
function values from the hidden layer into a special layer cal-
led the copy layer. The copy layer represents the feedback
loop which is essential for this type of neural network. More
complex versions of recurrent neural networks can have more
than one such layer. An algorithm similar to the BP algorithm
mentioned before is presented in [12].

Nonlinear function of output node are:
( + 1) = ( ) (1)

where
( ) = ( )

|
(2)

Notation for indexing of nodes are:

( ) =
( ), 0 < <
( ), 0 < < (3)

The errors of output node are:

( ) = ( ) ( ), ( )
0 , (4)

In order for this algorithm to work, values:

( ) =
( )

(5)

could be presented in next form (j represens a node):
( ) = ( ) ( ) + ( )               (6)

where parameters ik are defined as:

= 1, =
0, (7)

As  nodes  of  the  hidden  layer  are  not  fully  connected  to  the
ones in the summation layer, a selection process is necessary.
Hidden layer node outputs are calculated as follows:

( ) = ( ) ( ). (8)
and the total synaptic weight adjustment is calculated as:

= ( ). (9)

5  EVALUTATION OF ACQUIRED KNOWLEDGE
The purpose of the assessment is to determine which type of
neural network fits best for some classification problem. The-
refore the evaluation of acquired knowledge is an important
part of neural network application. During this process, it is
needed to determine which verification and validation measu-
res will be used. Different types of these measures exist throu-
gh specific application [13], [14], [15] and some of them are
applied in this paper.

5.1 Results Verification
There are several different measures used for result verificati-
on. Selection of the most appropriate one is always conditio-
ned with the actual problem. This corresponds to the aim of
this paper, because neural networks used for anomaly detecti-
on in this paper are trained as one-class classifiers. Table 1
provides an overview of possible outcomes of one-class classi-
fication problem solution.

It is evident that there are four possible outcomes of
anomaly detection. True positive (TP) and true negative (TN)
outcomes represent a correct classification, while false negati-
ve (FN) and false positive (FP) outcomes represent an incor-
rect one. Both types of incorrect classifications represent a
hazard. False positives can cause an action which is not nee-
ded, but false negatives are actually more dangerous because
an anomaly would be ignored.

Based on these counts, the following perfomance metrics
are calculated (all expresed as a percentage):

1. Accuracy (ACC).

=
+

+ + +
(10)

2. Sensitivity or true positive rate (TPR) or recall.

= +
(11)

3. Specificity or true negative rate (TNR).

= +
(12)

4. Precision (PR) or positive predictive value (PPV).

= +
(13)

5. Negative predictive value (NPR).

= +
(14)

6. F1 score.

1 =
2

2 + +
(15)

5.2 Results Validation
Result validation techniques are mainly linked to neural
networks if an input data set is not large enough. In addition
to that, they are used to test a neural network with some ran-
dom sample from the data set. If the data set is large enough,
which does not guarantee the neural network will be trained
properly. This is due to a possibility of overfitting the network
with a large number of similar instances. If that occurs, the
neural network could treat some noise as an anomaly. In order
to prevent this,  some kind of  result  validation should be per-
formed. Result validation techniques can also show if the neu-
ral network parameters are good enough. Commonly used
result validation techniques are: cross-validation, regularizati-
on, early stopping etc. Result validation techniques are not
exclusively used with neural networks. They are also used
with other anomaly detection techniques and with value pre-
diction techniques.

TABLE 1
POSSIBLE FORMS OF ONE-CLASS CLASSIFICATION PROBLEMS

Outcome Actual

Desired
Behavior Normal Anomalous

Normal True positive False positive
Anomalous False negative True negative

451

IJSER



International Journal of Scientific & Engineering Research Volume 6, Issue 8 August-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The  most  popular  result  validation  technique  is  cross-
validation [16]. The idea is to separate the available data into a
training data set (usually 80% to 90% of the data) and a test
data set (the remaining 10% to 20% of the data). The simplest
form of cross-validation randomly separates the available data
into a single training set and a single test set. It is a risky ap-
proach, because an unlucky split could lead to an ineffective
neural network. A better approach would be to repeat the
previous procedure multiple times, but this approach is also
risky because there is a chance that some instances could be
used only for training and never for testing, or vise versa. This
technique was called k-fold cross-validation.

The idea behind k-fold cross-validation is to divide all the
available data into k roughly equal-sized groups. In each itera-
tion of k-fold cross-validation, k-1 groups are used for training
and  the  remaining  one  is  used  for  testing.  The  k-fold  cross-
validation iterates through a number of folds. After the first
iteration, the next group is used for testing, and the remaining
data are used for training. This procedure repeats until all of
the groups are used for testing once.

The main advantage of k-fold cross-validation compared to
other techniques is utilization of all the available data in the
process. In addition to that, system requirements for this type
of validation are not very high. Therefore, this technique is
more convenient than other iteration based techniques. The
main disadvantage is the potential for different validation
results due to stochastic process of group forming at the be-
ginning of the validation process. The k-fold cross-validation
can give different results each time it is performed. This can be
avoided by repeating the process multiple times and using the
mean validation result.

6  RESULTS AND DISCUSSION

The  results  are  presented  as  a  set  of  different  verification
measures which show the effect of important parameters
change. Given that the k-fold cross-validation technique is
mentioned in the paper, in addition to the test results, 10-fold
cross-validation results are also presented.

Scores of an ideal classification would all be the same (1),
except TPR and TNR (0.5 – their sum is always 1). Given that
the initial synaptic weights are chosen randomly, it is possible
to  obtain  different  results  if  a  neural  network  is  trained  and
tested multiple times. Therefore, all of the obtained results are
obtained from average confusion matrices (average of multi-
ple training and testing cycles).

6.1 Neural Network Input Data
Neural networks were applied to data from two sections of

the boiler, the steam superheaters and the steam drums. These
sections consist of two separate systems each, which produce
steam of adequate quality together. Process variables used in
this paper represent both systems (I and II). The process vari-
ables from the steam superheaters are: superheated steam
temperature (TS), superheated steam flow (FS) and superheat-

ed steam cooling water flow (CWF). The variables from the
steam drums are: drum level (DL), drum pressure (DP) and
feedwater flow (FWF). All of the input data come from an
actual system for monitoring and control present in unit 4 of
Thermal Power Plant "Tuzla" with the sampling period of 1 s.

There are 962 instances that represent normal behavior and
the same amount representing anomalous behavior in the
input data set. That makes a total of 1924 instances for each
section. Given that, the 10-fold cross-validation isn't necessary
because the data set is not large enough, but to test the neural
networks with more random data sets. The data set is divided
into a training data set (70% of the data), a validation data set
(15% of the data) and a test data set (15% of the data).

Statistical parameters of process variables for normal and
anomaly date set (for the steam superheaters and the steam
drums) are presented in Table 2 and Table 3. The data are
separated on the ones representing normal behavior and the
ones representing anomalous behavior. There are significant
differences in the values representing different behaviors,
depending on the variable and the section. The differences
between the process variables can be best seen in the tables

TABLE 2
VALUES OF PROCESS VALUES FOR STEAM SUPERHEATERS

Process sets for normal behavior
Input varia-

ble Min. value Max. value Mean Stand. devia-
tion

TS I [°C] 532.67 543.93 537.63 1.74
FS I [t/h] 282.17 301.52 294.24 4.44

CWF I [t/h] 53.18 67.36 63.23 3.83
TS II [°C] 531.10 542.37 537.34 1.72
FS II [t/h] 277.63 291.84 285.79 3.30

CWF II [t/h] 59.18 66.31 62.62 1.73
Process sets for anomaly behavior

TS I [°C] 521.74 553.96 537.55 7.30
FS I [t/h] 279.96 310.24 292.77 6.31

CWF I [t/h] 38.82 86.19 63.08 12.62
TS II [°C] 526.59 546.76 537.21 5.63
FS II [t/h] 278.64 315.68 295.55 8.66

CWF II [t/h] 43.56 86.10 70.41 10.12

TABLE 3
VALUES OF PROCESS VALUES FOR STEAM DRUMS

Process sets for normal behavior
Input varia-

ble Min. value Max. value Mean Stand. devia-
tion

DL I [°C] 81.02 119.39 97.21 8.30
DP I [t/h] 133.05 137.08 135.64 0.97

FWF I [t/h] 224.60 252.12 241.50 7.70
DL II [°C] 76.63 120.09 104.05 9.53
DP II [t/h] 133.20 137.52 135.07 0.79

FWF II [t/h] 208.08 239.56 218.28 7.96

Process sets for anomaly behavior
DL I [°C] 42.71 129.39 85.41 20.23
DP I [t/h] 135.65 143.80 141.22 2.10

FWF I [t/h] 216.84 291.92 245.16 17.17
DL II [°C] 55.57 112.25 84.11 15.33
DP II [t/h] 136.65 144.02 141.62 2.13

FWF II [t/h] 220.24 268.96 241.71 16.50
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showing variance and standard deviation for each process
variable.

6.2 Results of Elman Recurrent Neural Network
Application

As  type  of  recurrent  neural  network  used  for  parameter
anomaly detection is the Elman recurrent neural network.
Results are obtained by network parameter changes. The pa-
rameters used are: number of neurons in hidden layers, lear-
ning rate, number of epochs and momentum. The basic Elman
neural network learning algorithm uses momentum. In addi-
tion to that, the algorithm can perform an adaptive learning
rate  adjustment.  All  of  the  changes  were  performed  in  five
steps.

The initial parameters of Elman neural network are: the
number of neurons in hidden layer is 10, there are 3 hidden
layers etc. The initial number of epochs is 50 and it is increased
to 250. The initial momentum value is 0.9,  the value is decrea-
sed to 0.1 for this parameter. The results of Elman neural net-
works application for anomaly detection in the steam super-
heaters are shown in the following tables (only the best ones
for each parameter change (Table 4 and Table 5).

Increasing the value of any parameter generally leads to
better results. However, there is an exception. There is a per-
formance drop upon increasing the learning rate value if the
value is greater than 0.1. As for the number of neurons, there
is only a slight improvement if the number is greater than 25,
and the same goes for the number of epochs (greater than 200).
Also it is shown that the best results can be achieved if the
momentum value is 0.9 (maximum recommended value).
However, great care is needed if the value of this parameter is
increased. If the other values are greater than the initial ones,

increasing the value of momentum can decrease the perfor-
mance.

The inputs from Steam Superheats for neural networks
(randomly distributed within a certain type of behavior) and
Elman recurrent neural network classification outputs are
shown in Figure 5. The figure is shown for a network with 15
neurons per hidden layer, 150 epochs in the training phase
and the learning rate value of 0.01. The momentum value for
the network is 0.9. Although the Elman neural networks give
good results, a big number of false positive classificatons is
noticable. This is compensated by reducing the number of
false negative classifications, which is more important.

As for the superheater, same parameter changes were per-
formed for stream drums in order to show their effect on clas-
sification results. The results are shown in the following tables
(Table 6 and Table 7).

The conclusion presented after the steam superheaters re-
sults generally applies to this section as well. However, there
is  a  difference.  The  performance  drop  upon  increasing  the
learning rate value is not so big, but it is still noticable. It is
also noticable that the Elman neural networks give better

TABLE 5
STATISTICAL VALUES OF TESTING RESULTS FOR SECTION STEAM

DRUMS

Measure
Number of

neurons = 30

Learning
rate

 = 0.1

Number of
epochs = 200

Momentum
 = 0.9

ACC 0.8771 0.9226 0.9833 0.8101
TPR 0.5645 0.5333 0.5067 0.5701
TNR 0.4355 0.4667 0.4933 0.4299
PR 0.8075 0.8763 0.9709 0.7527

NPR 0.9874 0.9818 0.9964 0.9012
F1 0.8896 0.9271 0.9836 0.8294

TABLE 4
STATISTICAL VALUES OF VERIFICATION RESULTS FOR SECTION

STEAM SUPERHEATERS

Measure
Number of
neurons= 30

Learning
rate

= 0.05

Number of
epochs = 250

Momentum
 = 0.9

ACC 0.8827 0.9129 0.9735 0.8046
TPR 0.5535 0.5265 0.5102 0.5587
TNR 0.4465 0.4735 0.4898 0.4413
PR 0.8152 0.8663 0.9615 0.7582

NPR 0.9837 0.9710 0.9863 0.8720
F1 0.8929 0.9169 0.9740 0.8214

Fig. 5. Anomaly detection using Elman recurrent network for Steam
Superheaters.
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results for this section compared to the steam superheaters.

The reason for that is the data used.

Following the example shown in Figure 5, anomaly
detection with Elman recurrent network for input test data
from Steam Drums is shown in Figure 6. The figure is shown
for one of the possible parameter combinations which provide
good results (25 neurons per hidden layer, 150 epochs, the
learning rate value is 0.1 and the momentum value is 0.9).

The number of false negatives is greater than the number of
false  positives  in  some  cases,  which  is  noticable  by  TPR  and
TNR ratio analysis. However those values are still quite low
and because it can be conclued that the Elman neural
networks can provide good results for this section.

7.  CONCLUSION
In this paper the Elman recurrent neural network was tested
with data from real-time thermal power system to explore
possibilities of anomaly detection.

An anomaly in any part of the boiler affects the operation of
thermal power plant unit. Malfunctions can be prevented by
timely anomaly detection. Given the system complexity, for
the purpose of necessary simplification, only some of the cha-
racteristic boiler sections and process variables from those
sections were selected for further analysis. All of the input
data come from an actual system for monitoring and control
present in Thermal Power Plant "Tuzla".

Our preliminary results of the application of recurrent neu-
ral network to anomaly detection indicate their potential  for
power generation process control in a thermal power

plant. Due to the fact that the data are divided so that the very
beginning of anomalous state is represented in anomalous
data instances, neural networks could be used as a tool for
early anomaly detection. Given that, an anomaly reaction time
could be significantly reduced. That would provide greater
system stability and therefore fewer losses.

Of  course,  neural  networks  could  not  do  the  job  on  their
own, because a single misclassification could seriously threa-
ten the system, but with the help of conventional automation
excellent results could be achieved and the impact of neural
networks on parameter anomaly detection results would not
be negligible. Only some data from large sections of the boiler
were  included  in  the  analysis  provided  in  this  paper.  In  an
actual application of neural networks for parameter anomaly
detection in thermal power plant, data from many other (smal-
ler) sections should be included.

TABLE 6
STATISTICAL VALUES OF VERIFICATION RESULTS FOR SECTION

STEAM SUPERHEATERS

Measure
Number of

neurons = 30

Learning
rate

 = 0.1

Number of
epochs = 150

Momentum
 = 0.9

ACC 0.9479 0.9674 0.9836 0.9307
TPR 0.5155 0.4983 0.4983 0.5319
TNR 0.4845 0.5017 0.5017 0.4681
PR 0.9091 0.9737 0.9933 0.8824

NPR 0.9930 0.9613 0.9740 0.9925
F1 0.9494 0.9673 0.9835 0.9346

TABLE 7
STATISTICAL VALUES OF TESTING RESULTS FOR SECTION STEAM

DRUMS

Measure Number of
neurons = 25

Learning
rate

 = 0.05

Number of
epochs = 200

Momentum
 = 0.9

ACC 0.9573 0.9778 0.9747 0.9450
TPR 0.5198 0.4964 0.4963 0.5227
TNR 0.4802 0.5036 0.5037 0.4773
PR 0.9251 0.9845 0.9817 0.9137

NPR 0.9947 0.9712 0.9678 0.9819
F1 0.9588 0.9776 0.9745 0.9473

Fig. 6. Anomaly detection using Elman recurrent network for Steam
Drums.
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LIST OF NOMENCLATURE

Symbol Represent to / or meanings
TS I [°C] superheated steam temperature from system I
FS I [t/h] superheated steam flow from system I

CWF I [t/h]
superheated steam cooling water flow from sys-
tem I

TS II [°C] superheated steam temperature from system II
FS II [t/h] superheated steam flow from system II

CWF II [t/h]
superheated steam cooling water flow from sys-
tem II

DL I [°C] drum level from system I
DP I [t/h] drum pressure from system I
FWF I [t/h] feedwater flow from system I
DL II [°C] drum level from system II
DP II [t/h] drum pressure from system II
FWF II [t/h] feedwater flow from system II

ACC
accuracy/the proportion of correctly classified
instances against all (correctly and incorrectly
classified) instances

TPR sensitivity or true positive rate; recall
TNR specificity or true negative rate

PR/PPV precision in positive outcomes/positive predictive
value

NPR precision in negative outcomes/negative predictive
value

F1 F1 score
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